Current Issue : October-December Volume : 2021 Issue Number : 4 Articles : 5 Articles
Distilled from the heartwood of Santalum album, Indian sandalwood oil is an essential oil that historically has been used as a natural active ingredient in cosmetics to condition and brighten the skin. It has been documented to exhibit antioxidant, anti-inflammatory, and anti-proliferative activities. Here, we investigated the protective and anti-aging effects of Indian sandalwood oil in scavenging reactive oxygen species (ROS) in HaCaT cells and in human skin explants after exposure to oxidative stress. Using a probe DCFH-DA, the antioxidant capacity of Indian sandalwood oil was monitored following exposure to blue light at 412 nm and 450 nm or cigarette smoke. The anti-aging effect of sandalwood oil was also explored in human skin explants via the assessment of collagenase level (MMP-1). We reported that Indian sandalwood oil possessed antioxidant potential that can scavenge the ROS generated by a free radical generating compound (AAPH). Subsequent exposure to environmental stressors revealed that Indian sandalwood oil possessed superior antioxidant activity in comparison to vitamin E (alpha tocopherol). Using human skin explants, this study demonstrated that Indian sandalwood oil can also inhibit the pollutant-induced level of MMP-1. The findings indicated that Indian sandalwood oil can potentially serve as a protective and anti-aging active ingredient in cosmetics and dermatology against environmental stressors....
Sulforaphane increases the expression of the dihydrotestosterone (DHT)-degrading enzyme, 3-hydroxysteroid dehydrogenase (3-HSD) in the liver, which accelerates DHT degradation, thereby inhibiting hair loss in the animal model. In this study, we elucidated its underlying mechanism and demonstrated that sulforaphane has hair loss inhibitory functions in RAW264.7 macrophage cells and Hepa1c1c7 cells at the cellular and gene levels. The gene expression level of an isoform of 3-HSD, Akr1c2, increased in a dose-dependent manner when these cells were treated with sulforaphane, but there were no significant differences at the gene levels of Akr1c2 and Dhrs9 for the negative control mixture of biotin, dexpanthenol, and L-menthol. These studies indicated that sulforaphane is involved in regulating the gene expression of Akr1c2. To further determine whether this hair product has effects on alleviating hair loss symptoms, clinical trials were also conducted for 18 weeks. We performed a visual evaluation of the parietal and frontal lines of 23 patients before and after using the product, and then calculated the total number of hairs. This clinical study showed that the parietal lines and bangs visually improved and the number of hairs increased by 6.71% from before using the test product to 18 weeks after using the test product. Taken together, these cellular and clinical studies strongly suggest that sulforaphane may be an active ingredient that significantly alleviates hair loss symptoms....
In this study, we verified the effects of 2-aza-8-oxohypoxanthine (AOH) on human epidermal cell proliferation by performing DNA microarray analysis. Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, which measures mitochondrial respiration in normal human epidermal keratinocyte (NHEK) cells. Gene expression levels were determined by DNA microarray analysis of 177 genes involved in skin aging and disease. AOH showed a significant increase in cell viability at concentrations between 7.8 and 31.3 g/mL and a significant decrease at concentrations above 250 g/mL. DNA microarray analysis showed that AOH significantly increased the gene expression of CLDN1, DSC1, DSG1, and CDH1 (E-cadherin), which are involved in intercellular adhesion and skin barrier functioning. AOH also up-regulated the expression of KLK5, KLK7, and SPIMK5, which are proteases involved in stratum corneum detachment. Furthermore, AOH significantly stimulated the expression of KRT1, KRT10, TGM1, and IVL, which are considered general differentiation indicators, and that of SPRR1B, a cornified envelope component protein. AOH exerted a cell activation effect on human epidermal cells. Since AOH did not cause cytotoxicity, it was considered that the compound had no adverse effects on the skin. In addition, it was found that AOH stimulated the expression levels of genes involved in skin barrier functioning by DNA microarray analysis. Therefore, AOH has the potential for practical use as a cosmetic ingredient. This is the first report of efficacy evaluation tests performed for AOH....
Two novel body/face wash gels enriched with emollient ingredients (including dexpanthenol) were developed for the daily care of dry skin. Two similarly designed 2-week studies (N = 42 each) were conducted to assess the biophysical and cosmetic performance of each of the new wash gels in healthy adults with dry skin. Instrumental measurements quantified the effects of the wash gels on stratum corneum (SC) hydration and transepidermal water loss (TEWL) (with and without a previous sodium lauryl sulfate (SLS) challenge) after single and repeated usage. Following single and repeated applications of the face wash gel to facial skin, as well as to dry SLS-undamaged and SLS-damaged skin of the forearm, skin hydration significantly increased. Similarly, after single and repeated usage of the body wash gel to dry SLS-undamaged and SLS-damaged skin of the forearm, skin moisturization increased significantly from baseline; comparisons with control areas provided inconsistent results for SLS-undamaged skin. No effects on TEWL were observed for either product. Both wash gels were well tolerated and the cosmetic performances were appreciated by the subjects. The study results suggest that daily use of the new wash gels was associated with significant skin-moisturizing effects without adversely affecting skin barrier function and repair...
Marine natural products are a good source of antioxidants due to the presence of a wide range of bioactive compounds. Accumulating evidence proves the potential use of seaweed-derived ingredients in skincare products. This study aims to evaluate the ultraviolet (UV) protective activity of the ethanol and water extracts of Padina australis. As the preliminary attempt for this discovery, the total phenolic content (TPC) and total flavonoid content (TFC) were measured, followed by the in vitro antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and reducing the power to shed light on its bioactivity. The UVB protective activity was examined on HaCaT human keratinocyte cells. The findings of this study reveal that the P. australis ethanol extract serves as a promising source of antioxidants, as it exhibits stronger antioxidant activities compared with the water extract in DPPH and the reducing power assays. The P. australis ethanol extract also demonstrated a higher level of total phenolic (76 mg GAE/g) and flavonoid contents (50 mg QE/g). Meanwhile, both the ethanol (400 g/mL) and water extracts (400 g/mL) protected the HaCaT cells from UVB-induced cell damage via promoting cell viability. Following that, LCMS analysis reveals that the P. australis ethanol extract consists of sugar alcohol, polysaccharide, carotenoid, terpenoid and fatty acid, whereas the water extract contains compounds from phenol, terpenoid, fatty acid, fatty alcohol and fatty acid amide. In summary, biometabolites derived from P. australis have diverse functional properties, and they could be applied to the developments of cosmeceutical and pharmaceutical products....
Loading....